Breeding

K.S. Rajan

Professor, School of Chemical & Biotechnology

SASTRA University

Table of Contents

1 QUIZ		3
	QUESTIONS	-
1.2	Answers	4

1 Quiz

1.1 Questions

1. Determine the reproduction factor in a fast reactor operating with a pure fuel whose fission and absorption cross sections are 1.85 b and 2.11 b respectively. The average number of neutrons produced per fission is 2.98

2. The following data pertain to a nuclear reactor utilizing enriched uranium ($N_{U-235}/N_{U-238}=0.025$) and operating in thermal spectrum:

U-235	U-238
$\sigma_{\rm f}$ = 586 b	$\sigma_{\rm f} = 0 \rm b$
$\sigma_a = 681 \text{ b}$	$\sigma_a = 2.7 \text{ b}$
v = 2.42	$\upsilon = 0$

Determine the reproduction factor.

3. The following data correspond to Pu-239 in a thermal reactor.

 $\sigma_{f} = 752 \text{ b}$ $\sigma_{a} = 1022 \text{ b}$ $\upsilon = 2.87$

Determine the reproduction factor if the fuel is pure.

4. Consider the answers for reproduction factor in the example problems 1 to 3 & assignment problems 1 to 3. Identify whether breeding is impossible/possible but not probable/possible and probable.

Problem	Reproduction factor	Scenario
Example-1	2.207	Possible but not probable
Example – 2	1.330	Impossible
Example – 3	2.3	Possible and probable
Assignment – 1	2.61	Possible and probable
Assignment – 2	1.8	Impossible
Assignment – 3	2.11	Possible but not probable

5. If a fast reactor is loaded with U-235 and Pu-239 such that $N_{U-235}/N_{Pu-239}=0.25$, determine the reproduction factor. Data on cross section and average number of neutrons produced per fission are given below:

U-235	Pu-239
$\sigma_f = 1.4 \text{ b}$	$\sigma_{\rm f}$ = 1.85 b
σ_{a} = 1.65 b	$\sigma_a = 2.11 \text{ b}$
v = 2.60	v = 2.98

1.2 Answers

1. Recall Eq. (1)

 $\eta_0 = \upsilon \sigma_f / \sigma_a = \upsilon \sigma_f / (\sigma_c + \sigma_a) = \upsilon / (1 + \alpha)$

 $\sigma_{f} = 1.85 \text{ b}$ $\sigma_{a} = 2.11 \text{ b}$ $\upsilon = 2.98$

Therefore, reproduction factor $(\eta_0) = 2.61$

2. Let '1' and '2' represent the isotopes U-235 and U-238 respectively. Using Eq. (2),

 $\eta = (N_{\scriptscriptstyle 1}\upsilon_{\scriptscriptstyle 1}\sigma_{f1} + N_2\upsilon_{\scriptscriptstyle 2}\sigma_{f2})/(N_{\scriptscriptstyle 1}\sigma_{a1} + N_{\scriptscriptstyle 2}\sigma_{a2})$

 $\eta = (N_{_1}\upsilon_{_1}\sigma_{f1}/N_2 + \upsilon_{_2}\sigma_{f2})/(N_{_1}\sigma_{a1}/N_2 + \sigma_{a2})$

 $\eta = (0.025 * 2.42 * 586) / (0.025 * 681 + 2.7) = 1.80$

Therefore, the reproduction factor under the above circumstances is 1.80

3. Recall Eq. (1),

 $\eta_0 = \upsilon \sigma_f / \sigma_a$

Substituting the data in Eq. (1), reproduction factor is obtained as 2.11

4.					
Problem	Reproduction factor	Scenario			
Example-1	2.207	Possible but not probable			
Example – 2	1.330	Impossible			
Example – 3	2.3	Possible and probable			
Assignment – 1	2.61	Possible and probable			
Assignment – 2	1.8	Impossible			
Assignment – 3	2.11	Possible but not probable			

5. Let '1' and '2' represent the isotopes U-235 and Pu-239 respectively. Using Eq. (2),

$$\begin{split} \eta = & (N_i \upsilon_i \sigma_{f1} + N_2 \upsilon_2 \sigma_{f2}) / (N_i \sigma_{a1} + N_2 \sigma_{a2}) \\ \eta = & (N_i \upsilon_i \sigma_{f1} / N_2 + \upsilon_2 \sigma_{f2}) / (N_i \sigma_{a1} / N_2 + \sigma_{a2}) \\ \eta = & (0.25 * 2.6 * 1.4 + 2.98 * 1.85) / (0.25 * 1.65 + 2.11) = 2.55 \end{split}$$

Therefore, the reproduction factor under the above circumstances is 2.55